1.1.2 Степень с натуральным показателем

Видеоурок 1: Свойства степени с натуральным показателем




Видеоурок 2: Степень с натуральным показателем и ее свойства



Лекция: Степень с натуральным показателем


Степень с натуральным показателем


Под степенью некоторого числа "а" с некоторым показателем "n" понимают произведение числа "а" само на себя "n" раз.

 

Когда говорят о степени с натуральным показателем, это означает, что число "n" должно быть целым и не отрицательным.




а - основание степени, которое показывает, какое число следует умножать само на себя, 

n - показатель степени - он говорит, сколько раз основание нужно умножить само на себя.



Например:

84 = 8 * 8 * 8 * 8 = 4096.


В данном случае под основанием степени понимают число "8", показателем степени считается число "4", под значением степени понимается число "4096". 


Самой большой и распространенной ошибкой при подсчете степени является умножение показателя на основание - ЭТО НЕ ВЕРНО!


Когда речь идет о степени с натуральным показателем, имеется в виду, что только показатель степени (n) должен быть натуральным числом. 


В качестве основания можно брать любые числа с числовой прямой.


Например,

(-0,1)3 = (-0,1) * (-0,1) * (-0,1) = (-0,001).


Математическое действие, которое совершается над основанием и показателем степени, называется возведение в степень. 


Сложение \ вычитание - математические действия первой ступени, умножение \ деление - действие второй ступени, возведение степени - это математическое действие третьей ступени, то есть одной из высших. 


Данная иерархия математических действий определяет порядок при расчете. Если данное действие встречается в задачах среди двух предыдущих, то оно делается в первую очередь.


Например:

15 + 6 *2 = 39


В данном примере необходимо сначала возвести 2 в степень, то есть

22 = 4,

затем полученный результат умножить на 6, то есть

4 * 6 = 24,

затем

24 + 15 = 39.


Степень с натуральным показателем используется не только для конкретных вычислений, но и для удобства записи больших чисел. В данном случае еще используется понятие "стандартный вид числа". Данная запись подразумевает умножение некоторого числа от 1 до 9 на основание степени равное 10 с некоторым показателем степени.


Например, для записи радиуса Земли в стандартном виде используют следующую запись:

6400000 м = 6,4 * 106 м,

а масса Земли, например, записывается следующим образом:

6 * 1024 кг.


Свойства степени


Для удобства решений примеров со степенями необходимо знать основные их свойства:


1. Если Вам необходимо умножить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.

an * am = an+m

Например:

5* 54 = 56.


2. Если необходимо разделить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть. Обратите внимани, для действий со степенями с натуральным показателем показатель степени делимого должен быть больше показателя степени делителя. В противном случае, частным данного действия будет число с отрицательным показателем степени.

an / am = an-m 

Например,

5* 52 = 52.


3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.

(an )m = an*m

Например,

(5)2 = 58.


4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.

(a * b)m = am * bm

Например,

(5 * 8 )2 = 52 * 82.


5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.

(a / b)m = am / bm


6. Любое число, которое возводится в показатель степени, равный единице, равно первоначальному числу.

а1 = а

Например,

51 = 5.


7. При возведении любого числа в степень с показателем ноль, результатом данного вычисления всегда будет единица.

а0 = 1

Например,

70 = 1.


Предыдущий урок
Следующий урок

Больше интересных статей:

  • 2.2 Характерные химические свойства и получение простых веществ - металлов: щелочных, щелочноземельных, алюминия; переходных элементов (меди, цинка, хрома, железа)
  • 1.2.4 Общая характеристика неметаллов IVA – VIIA групп в связи с их положением в Периодической системе химических элементов Д.И.Менделеева и особенностями строения их атомов
  • 2.1.3 «Просвещенный абсолютизм». Законодательное оформление сословного строя
  • 1.4.6 Смута. Социальные движения в России в начале XVII в. Борьба с Речью Посполитой и со Швецией
  • 1.2.1 Возникновение государственности у восточных славян. Князья и дружина. Вечевые порядки. Принятие христианства
  • Оставить комментарий